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SUMMARY

In this paper, the global method of di�erential quadrature (DQ) is applied to solve three-dimensional
Navier–Stokes equations in primitive variable form on a non-staggered grid. Two numerical approaches
were proposed in this work, which are based on the pressure correction process with DQ discretization.
The essence in these approaches is the requirement that the continuity equation must be satis�ed on the
boundary. Meanwhile, suitable boundary condition for pressure correction equation was recommended.
Through a test problem of three-dimensional driven cavity �ow, the performance of two approaches
was comparatively studied in terms of the accuracy. The numerical results were obtained for Reynolds
numbers of 100, 200, 400 and 1000. The present results were compared well with available data in
the literature. In this work, the grid-dependence study was done, and the benchmark solutions for the
velocity pro�les along the vertical and horizontal centrelines were given. Copyright ? 2003 John Wiley
& Sons, Ltd.
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INTRODUCTION

The di�erential quadrature (DQ) method was developed by Bellman et al. [1] to approximate
the derivative of a smooth function. The DQ method is inspired from the integral quadra-
ture. That is, it approximates the derivative at a mesh point by a weighted sum of all the
functional values in the whole domain. Obviously, the key to this method is the determina-
tion of weighting coe�cients. It was found that the computation of the weighting coe�cients
depends on the approximation of the function. When the function is approximated by a higher
order polynomial, Shu and Richards [2] presented some simple algebraic formulations and
recurrence relationship to calculate the weighting coe�cients of the �rst- and higher-order
derivatives. For simplicity, this case is called the polynomial-based di�erential quadrature
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(PDQ). When the function is approximated by a Fourier series expansion, Shu and Chew [3]
also presented some simple algebraic formulations to compute the weighting coe�cients of
the �rst- and second-order derivatives. And this case is termed the Fourier expansion-based
di�erential quadrature (FDQ). So far, the DQ-type methods have been widely applied in the
computational mechanics. The mathematical fundamentals of the DQ method and its wide
application in engineering were well summarized in the book of Shu [4].
The applications of DQ method in �uid mechanics [2–8] so far were limited to solve

the two-dimensional incompressible Navier–Stokes (N–S) equations in vorticity–stream func-
tion formulation. These applications showed that DQ is a very e�cient and robust numeri-
cal method. The major advantage of using vorticity–stream function formulation is that, the
momentum equations are replaced by a vorticity transport equation which does not contain
pressure gradient. Thus, the di�culty related to the velocity–pressure coupling is eliminated.
For the case of two-dimensional incompressible �ow, instead of solving the N–S equations
with three-dependent variables (two velocity components and pressure), only two-dependent
variables (stream function and vorticity) are solved in this formulation. Therefore, less compu-
tational e�ort and storage are needed. The pressure �eld can be obtained from the converged
solutions of stream function and vorticity. However, the major disadvantage of this formulation
is that it is di�cult to be extended to the three-dimensional case by virtue of the de�nition
of stream function. This is a serious limitation for the stream function–vorticity formulation
as most practical problems are three-dimensional in nature. Another disadvantage of vorticity-
based formulations is that they require to specify the boundary condition for vorticity at a
wall, which may not be physically given.
This paper tries to apply the DQ method to solve the three-dimensional incompressible N–S

equations. Up to now, a number of solutions of the three-dimensional incompressible N–S
equations have been reported. The formulations used in these work include vector stream
function–vorticity formulation by Mallinson and de Vahl Davis [9], velocity–vorticity for-
mulation by Dennis et al. [10], velocity–potential formulation by Kim and Moin [11] and
primitive variable form by Ku et al. [12]. Among these formulations, the primitive variable
form appears to be the least complex for solving the three-dimensional N–S equations.
However, there are two major di�culties in solving the primitive variable formulation.

Firstly, there is evidently no transport or other equation for pressure. The momentum equa-
tions and the continuity equation are intricately coupled since the velocity appears in both the
momentum and continuity equations but the pressure only appears in the momentum equa-
tions. Secondly, satisfying the continuity equation on the boundary is not automatic, and this
condition should be enforced.
To remove the di�culties in solving the primitive variable formulation, Patankar and

Spalding [13, 14] proposed an iterative process in 1972 to solve the pressure–velocity linkage
problem. The proposed process is termed semi-implicit method for pressure-linked equations
(SIMPLE). In this algorithm, an estimated pressure �eld is used to solve the momentum
equations. A pressure correction equation, deduced from the continuity equation, is solved
to obtain a pressure correction �eld that is in turn used to update the velocity and pressure
�elds. The process continues until the velocity and pressure �elds are converged. SIMPLE
algorithm is usually applied with lower-order �nite di�erence and �nite volume discretization
[13–16]. Generally, a staggered grid is needed. When the staggered grid is used, the conti-
nuity equation can be satis�ed automatically on the boundary. However, the use of staggered
grid also results in considerable programming e�ort.
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As discussed above, SIMPLE algorithm is an e�cient way to solve primitive variable
form of incompressible N–S equations, while DQ is a robust discretization scheme that can
generate accurate results by using very few mesh points. In this paper, the SIMPLE strategy
is combined with the DQ discretization on a non-staggered grid to solve three-dimensional
incompressible N–S equations in primitive variable form. It is believed that this combination
holds all the advantages of SIMPLE strategy and DQ method. The use of non-staggered
grid can greatly simplify the programming e�ort. However, this combination faces two major
di�culties. One di�culty is how to enforce the continuity equation on the boundary. Since
DQ discretization is based on a non-staggered grid, the satisfying of continuity equation on
the boundary is not automatic when the primitive variable form is used. It is known that the
satisfying of continuity equation is very critical to get the true solution. Thus, one should
present some ways to enforce the continuity condition on the boundary. Another di�culty is
how to properly implement the boundary condition for pressure correction equation.
In order to solve these problems, two numerical approaches are presented in this paper. The

key e�ort is to propose some ways to enforce the continuity equation on the boundary and
to suggest the boundary condition for pressure correction equation. The proposed approaches
are validated by their application to simulate the three-dimensional lid-driven cavity �ows. It
was found that for both approaches, accurate numerical results could be obtained by using a
few grid points. Also in this paper, the grid-dependence study is done, and the benchmark
solutions for the velocity distributions along the vertical and horizontal centrelines are provided
for di�erent Reynolds numbers.

DISCRETIZATION OF DERIVATIVES BY PDQ METHOD

The development of PDQ method [2] is based on the analysis of a linear vector space and
of higher-order polynomial approximation. It is assumed that a function is su�ciently smooth
so that its derivative at any grid point is approximated by a linear weighted sum of all the
functional values in the whole computational domain. For example, the �rst- and second-order
derivatives of a function f(x) at a point xi can be approximated by

f′(xi) =
N∑
j=1
w(1)i; j · f(xj) (1)

f′′(xi) =
N∑
j=1
w(2)i; j · f(xj) (2)

where N is the total number of grid points. The weighting coe�cients w(1)i; j ; w
(2)
i; j are computed

by PDQ method as

w(1)i; j =
M (1)(xi)

(xi − xj) ·M (1)(xj)
for j �= i (3a)

w(1)i; i =−
N∑

k=1; k �=i
w(1)i; k (3b)
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w(2)i; j =2 · w(1)i; j
(
w(1)i; i −

1
xi − xj

)
for j �= i (4a)

w(2)i; i =−
N∑

k=1; k �=i
w(2)i; k (4b)

where M (1)(xi)= (x − x1) · (x − x2) · · · (x − xi−1) · (x − xi+1) · · · (x − xN ). It is indicated that
the weighting coe�cients can be computed by a recurrence relationship for the second- and
higher-order derivatives [2, 4]. It is shown in Reference [4] that PDQ is equivalent to the
highest order �nite di�erence scheme. In other words, it has (N − m)th order of accuracy
for the mth order derivative when the number of mesh points is N . Although Equations (1)–
(4) can be well applied to both uniform and non-uniform grids, it is recommended to use
non-uniform grid with mesh points being clustered near the boundary [4]. Previous work [5, 6]
showed that PDQ is more e�cient than lower-order FD schemes in terms of accuracy and
computational e�ort.

PRIMITIVE VARIABLE FORMULATION AND BOUNDARY CONDITIONS

The three-dimensional lid-driven cavity �ow is considered in this study. The physical bound-
aries are de�ned as sx−y : 06x61; 06y61, sx−z : 06x61; 06z61, and sy−z : 06y61; 06
z61.
The non-dimensional form of three-dimensional, time-dependent, incompressible N–S equa-

tions are taken as the governing equations for this study, which can be written as

@u
@t
+ u

@u
@x
+ v

@u
@y
+ w

@u
@z
=−@p

@x
+
1
Re

∇2u (5)

@v
@t
+ u

@v
@x
+ v

@v
@y
+ w

@v
@z
=−@p

@y
+
1
Re

∇2v (6)

@w
@t
+ u

@w
@x
+ v

@w
@y
+ w

@w
@z
=−@p

@z
+
1
Re

∇2w (7)

@u
@x
+
@v
@y
+
@w
@z
=0 (8)

where u; v, and w are the velocity components along x-direction, y-direction and z-direction,
respectively, p is the pressure. Re is the Reynolds number. The physical boundary conditions
of the problem are speci�ed as

u=0; v=0; w=0 on sy−z; x=0 and 1 (9a)

u=1; v=0; w=0 on sx−z; y=1 (9b)

u=0; v=0; w=0 on sx−z; y=0 (9c)

u=0; v=0; w=0 on sx−y; z=0 and 1 (9d)
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NUMERICAL ALGORITHMS

Based on the non-staggered grid, two approaches are presented to solve the N–S equations in
primitive variable form. For both approaches, the SIMPLE strategy is used to form the basic
iterative process to solve Equations (5)–(8) where the spatial derivatives in three directions
are discretized by PDQ method. Each approach proposes its own way to enforce the continu-
ity equation on the boundary and to suggest the boundary condition for pressure correction
equation.

Basic iterative process

With an initial estimation of pressure �eld and the velocity �eld at the time level n, the
application of PDQ method to the spatial derivatives and the �rst-order forward di�erence
scheme to the temporal derivatives of Equations (5)–(7) gives

u∗i; j; k = u
n
i; j; k +�t

[
Ani; j; k −

N∑
ll=1

w(1)i; llp
∗
ll; j; k

]
(10)

v∗i; j; k = v
n
i; j; k +�t

[
Bni; j; k −

M∑
ll=1

�w(1)j; llp
∗
i; ll; k

]
(11)

w∗
i; j; k =w

n
i; j; k +�t

[
Cni; j; k −

L∑
ll=1

ŵ(1)k; llp
∗
i; j; ll

]
(12)

where

Ani; j; k =
1
Re

(
N∑
ll=1;

w(2)i; llu
n
ll; j; k +

M∑
ll=1

�w(2)j; llu
n
i; ll; k +

L∑
ll=1;

ŵ(2)k; llu
n
i; j; ll

)
− uni; j; k

N∑
ll=1

w(1)i; llu
n
ll; j; k

− vni; j; k
M∑
ll=1

�w(1)j; llu
n
i; ll; k − wni; j; k

L∑
ll=1

ŵ(1)k; llu
n
i; j; ll

Bni; j; k =
1
Re

(
N∑
ll=1

w(2)i; j v
n
ll; j; k +

M∑
ll=1

�w(2)j; llv
n
i; ll; k +

L∑
ll=1

ŵ(2)k; j v
n
i; j; ll

)
− uni; j; k

N∑
ll=1

w(1)i; llv
n
ll; j; k

− vni; j
M∑
ll=1

�w(1)j; llv
n
i; ll; k − wni; j; k

L∑
ll=1

ŵ(1)k; llv
n
i; j; ll

Cni; j; k =
1
Re

(
N∑
ll=1;

w(2)i; llw
n
ll; j; k +

M∑
ll=1

�w(2)j; ll w
n
i; ll; k +

L∑
ll=1;

ŵ(2)k; llw
n
i; j; ll

)
− uni; j; k

N∑
ll=1

w(1)i; llw
n
ll; j; k

− vni; j; k
M∑
ll=1

�w(1)j; llw
n
i; ll; k − wni; j; k

L∑
ll=1

ŵ(1)k; llw
n
i; j; ll

where w(1)i; j ; w
(2)
i; j are the weighting coe�cients of the �rst- and second-order derivatives in

the x-direction, while �w(1)i; j ; �w
(2)
i; j are the weighting coe�cients of the �rst- and second-order

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:345–368



350 C. SHU, L. WANG AND Y. T. CHEW

derivatives in the y-direction, and ŵ(1)i; j ; ŵ
(2)
i; j are the weighting coe�cients of the �rst- and

second-order derivatives in the z-direction.
The intermediate velocity �eld u∗; v∗ and w∗ at the time level n+1, given from Equations

(10)–(12), may not satisfy the continuity equation (8). To satisfy Equation (8), a correction
is needed for the velocity and pressure �elds, that is

un+1 = u∗ + u′ (13a)

vn+1 = v∗ + v′ (13b)

wn+1 =w∗ + w′ (13c)

pn+1 =p∗ + p′ (13d)

It is assumed that Equations (5)–(8) are satis�ed for the corrected values of un+1; vn+1; wn+1

and pn+1. Thus, using the same manner, we can obtain

un+1i; j; k = u
n
i; j; k +�t

[
Ani; j; k −

N∑
ll=1

w(1)i; llp
n+1
ll; j; k

]
(14)

vn+1i; j; k = v
n
i; j; k +�t

[
Bni; j; k −

M∑
ll=1

�w(1)j; llp
n+1
i; ll; k

]
(15)

wn+1i; j; k =w
n
i; j; k +�t

[
Cni; j; k −

L∑
ll=1

ŵ(1)k; llp
n+1
i; j; ll

]
(16)

N∑
ll=1

w(1)i; ll · u′ll; j; k +
M∑
ll=1

�w(1)j; ll · v′i; ll; k +
L∑
ll=1

ŵ(1)k; ll · w′
i; j; ll=−S∗i; j; k (17)

where S∗i; j; k =
∑N

ll=1 w
(1)
i; ll · u∗ll; j; k +

∑M
ll=1 �w

(1)
j; ll · v∗i; ll; k +

∑L
ll=1 ŵ

(1)
k; ll · w∗

i; j; ll.
Obviously, subtracting Equation (10) from Equation (14) gives

u′i; j; k =−�t
N∑
ll=1

w(1)i; llp
′
ll; j; k (18)

and subtracting Equation (11) from Equation (15) and Equation (12) from Equation (16)
leads to

v′i; j; k =−�t
M∑
ll=1

�w(1)j; llp
′
i; ll; k (19)

w′
i; j; k =−�t

L∑
ll=1

ŵ(1)k; llp
′
i; j; ll (20)

Note that the velocity correction u′; v′ and w′ on the boundary are always zero during
the iteration process. Thus, when Equations (18)–(20) are substituted into Equation (17),
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we get

N∑
ll=1

W (2)
i; llp

′
ll; j; k +

M∑
ll=1

�W (2)
j; llp

′
i; ll; k +

L∑
ll=1

Ŵ (2)
k; llp

′
i; j; ll= S

∗
i; j; k =�t (21)

where

W (2)
i; ll =

N−1∑
k1=2

w(1)i; k1w
(1)
k1; ll; �W (2)

j; ll =
M−1∑
k1=2

�w(1)j; k1 �w
(1)
k1; ll and Ŵ (2)

k; ll=
N−1∑
k1=2

ŵ(1)k; k1ŵ
(1)
k1; ll

The use of Equations (10)–(13), (18)–(21) forms a basic iterative process. In the beginning,
the initial estimation of velocity and pressure �elds given. Then from Equations (10)–(12),
the intermediate velocity u∗; v∗ and w∗ are computed. The obtained u∗; v∗ and w∗ are there
with substituted into Equation (21) to solve for the pressure correction p′. From the pressure
correction p′, the velocity correction u′; v′ and w′ can be calculated by Equations (18)–(20).
Next, by using Equation (13), the improved velocity and pressure �elds can be obtained. After
that, we need to check the convergence criteria. If the convergence criteria were satis�ed, the
computation would be stopped. Otherwise, the improved velocity and pressure �elds are taken
as the new initial estimation and the above process is repeated until the convergence criteria
are satis�ed.
As mentioned earlier, PDQ discretization is based on the non-staggered grid, so the conti-

nuity equation on the boundary is not automatically satis�ed in above process. However, the
satisfaction of continuity equation on the boundary is critical for our numerical simulation.
When this condition is not satis�ed, it implies that there are many sources (sinks) on the
boundary, through which the mass �ux can �ow in or �ow out. So the physical problems
are altered. To avoid this, the continuity equation, that is, Equation (8), must be accurately
satis�ed on the boundary. During the above iterative process, another concern is the numeri-
cal implementation of boundary condition for pressure correction equation since the physical
condition for pressure correction does not exist. The following two approaches give di�erent
ways to specify the boundary condition for the pressure correction equation, and to guarantee
the satisfaction of continuity equation on the boundary.

Approach 1

It is observed from Equation (13) that p∗ is the initial estimation of pressure while p′ is
the pressure correction. If the pressure is given on the boundary for a problem, p∗ should
always be chosen as the given value. Then for this case, p′ should be taken as zero on the
boundary. For a general case, the pressure is usually not given on the boundary, but it can
be computed from the momentum equations. For the test problem shown above, the pressure
on the boundary can be computed from

@p
@x
=
1
Re
@2v
@x2

at x=0; 1; 0¡y¡1; 0¡z¡1 (22a)

@p
@y
=
1
Re

@2v
@y2

at y=0; 1; 06x61; 06z61 (22b)

@p
@z
=
1
Re
@2w
@z2

at z=0; 1; 06x61; 0¡y¡1 (22c)
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Using PDQ method to discretize the spatial derivatives in Equation (22), the pressure on the
boundary can be calculated by

p1; j; k =
1

AXN

[
(w(1)N;ND1; j; k − w(1)1; NDN; j; k) +

N−1∑
ll=2

(w(1)N; llw
(1)
1; N − w(1)1; llw(1)N;N )pll; j; k

]
(23a)

pN; j; k =− 1
AXN

[
(w(1)N;1D1; j; k − w(1)1;1DN; j; k) +

N−1∑
ll=2

(w(1)N; llw
(1)
1;1 − w(1)1; llw(1)N;1)pll; j; k

]
(23b)

pi;1; k =
1

AYM

[
( �w(1)M;MEi;1; k − �w(1)1;MEi;M; k) +

M−1∑
ll=2

( �w(1)M; ll �w
(1)
1;M − �w(1)1; ll �w

(1)
M;M )pi; ll; k

]
(23c)

pi;M; k =− 1
AYM

[
( �w(1)M;1Ei;1; k − �w(1)1;1Ei;M; k) +

M−1∑
ll=2

( �w(1)M; ll �w
(1)
1;1 − �w(1)1; ll �w

(1)
M;1)pi; ll; k

]
(23d)

pi; j;1 =
1
AZL

[
(ŵ(1)L; LFi; j;1 − ŵ(1)1; LFi; j; L) +

L−1∑
ll=2

(ŵ(1)L; llŵ
(1)
1; L − ŵ(1)1; llŵ(1)L; L)pi; j; ll

]
(23e)

pi; j; L =− 1
AZL

[
(ŵ(1)L;1Fi; j;1 − ŵ(1)1;1Fi; j; L) +

L−1∑
ll=2

(ŵ(1)L; llŵ
(1)
1;1 − ŵ(1)1; llŵ(1)L;1)pi; j; ll

]
(23f)

where

AXN =w(1)N;Nw
(1)
1;1 − w(1)1; Nw(1)N;1; AYM = �w(1)1;1 �w

(1)
M;M − �w(1)M;1 �w

(1)
1;M ; AZL= ŵ(1)L; Lŵ

(1)
1;1 − ŵ(1)1; Lŵ(1)L;1

D1; j; k =
1
Re

N∑
ll=1

w(2)1; llull; j; k ; DN; j; k =
1
Re

N∑
ll=1

w(2)N; llull; j; k ; Ei;1; k =
1
Re

M∑
ll=1

�w(2)1; llvi; ll; k

Ei;M; k =
1
Re

M∑
ll=1

�w(2)M; llvi; ll; k ; Fi; j;1 =
1
Re

L∑
ll=1

ŵ(2)1; llwi; j; ll; Fi; j; L=
1
Re

L∑
ll=1

ŵ(2)L; llui; j; ll

When pressure on the boundary is determined by Equation (23), the pressure correction on
the boundary can be speci�ed as p′=0. Then Equation (21) can be solved by SOR method.
However, having the proper boundary condition for pressure correction is not su�cient, which
may still lead to inaccurate numerical results. To get the accurate solution, one has to enforce
the continuity equation on the boundary.
It can be noted that when the continuity equation is satis�ed on the boundary, the following

Neumann condition for velocity can be derived:

@u
@x
=0 at x=0; 1; 0¡y¡1; 0¡z¡1 (24a)

@v
@y
=0 at y=0; 1; 06x61; 06z61 (24b)

@w
@z
=0 at z=0; 1; 06x61; 0¡y¡1 (24c)
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In this approach, Equation (24) is enforced after the improved velocity �eld is obtained from
Equation (13). Equation (9) provides one boundary condition for the velocity at each boundary
point. So, when Equation (24) is also applied, there will be two boundary conditions for the
velocity. One condition can be considered as the equation for the boundary point itself, and
the other condition (derivative condition) is converted to the equation for its neighbouring
point. After PDQ discretization of derivatives in Equation (24), the velocity on the boundary
and its neighbouring points can be computed by

u1; j; k =0; uN; j; k =0; ui;1; k =0; ui;M; k =1; ui; j;1 = 0; ui; j; L=0 (25a)

v1; j; k =0; vN; j; k =0; vi;1; k =0; vi;M; k =0; vi; j;1 = 0; vi; j; L=0 (25b)

w1; j; k =0; wN; j; k =0; wi;1; k =0; wi;M; k =0; wi; j;1 = 0; wi; j; L=0 (25c)

u2; j; k =
1

w(1)1;2w
(1)
N;N−1 − w(1)N;2w(1)1; N−1

[
N−2∑
ll=3

(w(1)N; llw
(1)
1; N−1 − w(1)1; llw(1)N;N−1)ull; j; k

]
(26a)

uN−1; j; k =
1

w(1)N;2w
(1)
1; N−1 − w(1)1;2w(1)N;N−1

[
N−2∑
ll=3

(w(1)N; llw
(1)
1;2 − w(1)1; llw(1)N;2)ull; j; k

]
(26b)

vi;2; k =
1

�w(1)1;2 �w
(1)
M;M−1 − �w(1)M;2 �w

(1)
1;M−1

[
M−2∑
ll=3

( �w(1)M; ll �w
(1)
1;M−1 − �w(1)1; ll �w

(1)
M;M−1)vi; ll; k

]
(27a)

vi;M−1; k =
1

�w(1)M;2 �w
(1)
1;M−1 − �w(1)1;2 �w

(1)
M;M−1

[
M−2∑
ll=3

( �w(1)M; ll �w
(1)
1;2 − �w(1)1; ll �w

(1)
M;2)vi; ll; k

]
(27b)

wi; j;2 =
1

ŵ(1)1;2ŵ
(1)
L; L−1 − ŵ(1)L;2ŵ(1)1; L−1

[
L−2∑
ll=3

(ŵ(1)L; llŵ
(1)
1; L−1 − ŵ(1)1; llŵ(1)L; L−1)wi; j; ll

]
(28a)

wi; j; L−1 =
1

ŵ(1)L;2ŵ
(1)
1; L−1 − ŵ(1)1;2ŵ(1)L; L−1

[
L−2∑
ll=3

(ŵ(1)L; llŵ
(1)
1;2 − ŵ(1)1; llŵ(1)L;2)wi; j; ll

]
(28b)

It is noted that in this approach, Equation (13d) is only applied to the interior mesh points.
Since the pressure on the boundary is directly computed from the momentum equations, the
pressure �eld obtained by this approach is a true �eld.

Approach 2

In this approach, the satisfying of continuity equation on the boundary and the implementation
of boundary condition for pressure correction are combined. In other words, the boundary
condition for pressure correction is derived from the continuity equation on the boundary.
The idea of this approach is very similar to the one used in the pseudo-spectral method [17].
Substituting Equations (13a)–(13c) into Equation (8), we obtain

@u′

@x
=−@u

∗

@x
at x=0; 1; 0¡y¡1; 0¡z¡1 (29a)
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@v′

@y
=−@v

∗

@y
− @u
@x

at y=0; 1; 06x61; 06z61 (29b)

@w′

@z
=−@w

∗

@z
at z=0; 1; 06x61; 0¡y¡1 (29c)

Using Equation (18) and PDQ discretization for derivatives, Equation (29a) gives the follow-
ing condition for p′ at the boundary of i=1 and N .

p′
1; j; k =

1
BXN

(W (2)
N;NG1; j; k −W (2)

1; NGN; j; k) (30a)

p′
N; j; k =− 1

BXN
(W (2)

N;1G1; j; k −W (2)
1;1GN; j; k) (30b)

Similarly, using Equations (20) and (21) and PDQ discretization respectively, Equations (29b)
and (29c) provide

p′
i;1; k =

1
BYM

( �W (2)
M;MHi;1; k − �W (2)

1;MHi;M; k) (31a)

p′
i;M; k =− 1

BYM
( �W (2)

M;1Hi;1; k − �W (2)
1;1Hi;M; k) (31b)

p′
i; j;1 =

1
BZL

(Ŵ (2)
L; LRi; j;1 − Ŵ (2)

1; L Ri; j; L) (32a)

p′
i; j; L =− 1

BZL
(Ŵ (2)

L;1Ri; j;1 − Ŵ (2)
1;1 Ri; j; L) (32b)

where

BXN =W (2)
N;NW

(2)
1;1 −W (2)

1; NW
(2)
N;1; BYM = �W (2)

1;1
�W (2)
M;M − �W (2)

M;1
�W
(2)
1;M

BZL=Ŵ (2)
L; L Ŵ

(2)
1;1 − Ŵ (2)

1; L Ŵ
(2)
L;1

G1; j; k =
1
�t

N∑
ll=1

w(1)1; llu
∗
ll; j; k −

N−1∑
ll=2

W (2)
1; llp

′
ll; j; k ; GN; j; k =

1
�t

N∑
ll=1

w(1)N; llu
∗
ll; j; k −

N−1∑
ll=2

W (2)
N; llp

′
ll; j; k

Hi;1; k =
1
�t

(
M∑
ll=1

�w(1)1; llv
∗
i; ll; k +

N∑
ll=1

w(1)i; llull;1; k

)
−
M−1∑
ll=2

�W (2)
1; llp

′
i; ll; k

Hi;M; k =
1
�t

(
M∑
ll=1

�w(1)M; llv
∗
i; ll; k +

N∑
ll=1

w(1)i; llull;M; k

)
−
M−1∑
ll=2

�W (2)
M; llp

′
i; ll; k

Ri; j;1 =
1
�t

L∑
ll=1

ŵ(1)1; llw
∗
i; j; ll −

L−1∑
ll=2

Ŵ (2)
1; llp

′
i; j; ll; Ri; j; L=

1
�t

L∑
ll=1

ŵ(1)L; llw
∗
i; j; ll −

L−1∑
ll=2

Ŵ (2)
L; llp

′
i; j; ll
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When the pressure correction at all interior points are computed from Equation (22), the
pressure correction on the boundary can be updated by using Equations (30)–(32). It was
found that this approach is very sensitive to the singularity of velocity u on the edge of lid
wall. To eliminate the e�ect of singularity, the boundary condition for u was adjusted over a
few points so that at x=0; 1 and z=0; 1 of the lid wall, u is taken as 0, and at the adjacent
points of the lid wall, u is adjusted to 0.3 instead of 1.0. The small grid spacing near the
boundary should make this approach a reasonable approximation to the original problem.
It should be indicated that, in this approach, the continuity equation and Equation (13d)

are applied at all points including the boundary points, but the momentum equations are only
applied at interior mesh points. The pressure �eld obtained by this approach is a relative �eld.

NUMERICAL RESULTS AND DISCUSSION

The driven cavity �ow problem is a standard test case to validate new numerical techniques.
Three-dimensional solutions of lid-driven cavity �ows have been reported by Ku et al. [17],
Jiang et al. [18] and others [19–23]. The numerical results given by Ku
et al. [17] were obtained by using Chebyshev pseudospectral method to solve incompress-
ible Navier–Stokes equations in primitive variable, and the results of Jiang et al. [18] were
obtained by using least-square �nite element method to solve velocity–pressure–vorticity for-
mulation. The mesh sizes used by Ku et al. [17] are 25× 25× 13 for Re=100; 400, and
31× 31× 16 for Re=1000, while the mesh size used by Jiang et al. [18] is 50× 52× 50
for Re=100; 400; 1000. In order to validate the proposed approaches for solving the incom-
pressible Navier–Stokes equations in primitive variable form, the three-dimensional lid-driven
cavity �ow is considered in this study.
In the present work, the attention is focused on applying proposed approaches to simulate

the steady-state lid-driven cavity �ow. In the study, the unsteady Navier–Stokes equations are
used and processed in time until a steady-state resolution is reached. For the convergence
criterion, the absolute maximum residual is set to be less than 10−4 for momentum equations
and 10−6 for pressure correction equation. The PDQ method is used to discretize derivatives
in three spatial directions. Numerical simulation was conducted for four Reynolds numbers of
Re=100; 200; 400 and 1000 using mesh size of 21× 21× 21; 23× 23× 23; 25× 25× 25 and
31× 31× 31, respectively. The initial values for all the variables at the interior points are
set to zero. All the computing processes were carried out on Cray J916. The results were
compared with those of Ku et al. [17] and Jiang et al. [18]. The mesh point distribution in
three spatial directions is taken the same, and chosen as

xi=
cos[�=(2N )]− cos[(2i − 1)�=(2N )]
cos[�=(2N )]− cos[(2N − 1)�=(2N )] ; i=1; 2; : : : ; N (33)

where N is the number of grid points. The grid-dependence study was �rst conducted. It was
found that when the mesh size is above a certain value, the numerical results by two proposed
approaches are independent of mesh size. Tables I–IV show the grid-dependence results of
u-velocity on the vertical centreline and v-velocity on the horizontal centreline at Reynolds
number of 100. Also included in these tables are the results of Jiang et al. [18]. It is noted
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Table V. u-velocity distribution along the vertical centreline through geometric centre of 3D cavity.

u-velocity calculated at di�erent Reynolds numbers

y 100 200 400 1000

0.00 0.000 0.000 0.000 0.000
0.05 −0:037 −0:050 −0:088 −0:197
0.10 −0:068 −0:093 −0:152 −0:273
0.15 −0:095 −0:130 −0:200 −0:270
0.20 −0:122 −0:163 −0:229 −0:214
0.25 −0:146 −0:190 −0:235 −0:145
0.30 −0:169 −0:209 −0:216 −0:090
0.35 −0:190 −0:216 −0:180 −0:052
0.40 −0:206 −0:211 −0:134 −0:025
0.45 −0:214 −0:192 −0:089 −0:007
0.50 −0:213 −0:162 −0:048 0.008
0.55 −0:200 −0:125 −0:014 0.022
0.60 −0:175 −0:084 0.015 0.035
0.65 −0:139 −0:043 0.039 0.048
0.70 −0:090 −0:003 0.062 0.062
0.75 −0:028 0.037 0.083 0.078
0.80 0.054 0.083 0.106 0.097
0.85 0.174 0.150 0.138 0.120
0.90 0.361 0.284 0.213 0.157
0.95 0.644 0.563 0.455 0.308
1.00 1.000 1.000 1.000 1.000

Table VI. v-velocity distribution along the horizontal centreline through geometric centre of 3D cavity.

v-velocity calculated at di�erent Reynolds numbers

x 100 200 400 1000

0.00 0.000 0.000 0.000 0.000
0.05 0.074 0.092 0.139 0.195
0.10 0.120 0.143 0.196 0.245
0.15 0.145 0.163 0.207 0.232
0.20 0.153 0.164 0.197 0.195
0.25 0.147 0.155 0.180 0.158
0.30 0.133 0.140 0.160 0.126
0.35 0.112 0.120 0.138 0.099
0.40 0.085 0.098 0.115 0.077
0.45 0.052 0.071 0.090 0.057
0.50 0.013 0.039 0.063 0.038
0.55 −0:031 0.000 0.031 0.019
0.60 −0:081 −0:049 −0:005 0.000
0.65 −0:134 −0:109 −0:051 −0:020
0.70 −0:186 −0:179 −0:113 −0:043
0.75 −0:228 −0:250 −0:199 −0:077
0.80 −0:249 −0:303 −0:303 −0:143
0.85 −0:236 −0:305 −0:378 −0:278
0.90 −0:184 −0:240 −0:340 −0:429
0.95 −0:099 −0:123 −0:177 −0:309
1.00 0.000 0.000 0.000 0.000

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:345–368



COMPUTATION OF 3D INCOMPRESSIBLE NAVIER–STOKES EQUATIONS 359

0.00

0.20

0.40

0.60

0.80

1.00

-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

u

y
Jiang (Re=100)

Ku (Re=100)
Approach 1 (Re=100)
Jiang (Re=400)

Ku (Re=400)
Approach 1 (Re=400)
Jiang (Re=1000)
Ku (Re=1000)
Approach 1 (Re=1000)

(a) 

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.00 0.20 0.40 0.60 0.80 1.00

x

v

Ku (Re=100)
Approach 1 (Re=100)
Ku (Re=400)
Approach 1 (Re=400)
Ku (Re=1000)
Approach 1 (Re=1000)

(b) 

Figure 1. Comparison of velocity distribution calculated by Approach 1 and available data in the
literature. (a) Distribution of u-velocity along the vertical centreline of cubic cavity (u–y) and (b)

distribution of v-velocity along the horizontal centreline of cubic cavity (x–v).

that the PDQ discretization is based on the non-uniform mesh given by Equation (33). So,
the results shown in Tables I–IV were obtained on a uniform mesh by Lagrange interpolation
for the sake of comparison. The use of Lagrange interpolation does not a�ect the accuracy of
numerical results since the PDQ method is also based on the Lagrange interpolated polynomial.
It can be observed from Tables I–IV that the convergence of numerical results is very good
for both approaches. As the number of grid points increases, the accuracy of numerical results
is improved very quickly. Meanwhile, it can be seen from these tables that the convergent
velocity values by two approaches agree well each other. The present results also agree well
with those reported in Reference [18]. Based on the grid-dependence study, we have the
ability to give benchmark solutions of the velocity distribution on the vertical centreline and
horizontal centreline of 3D driven cavity. The benchmark solutions of velocity pro�les along
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Figure 2. Comparison of velocity distribution calculated by Approach 2 and available data in the
literature. (a) Distribution of u-velocity along the vertical centreline of cubic cavity (u–y) and (b)

distribution of v-velocity along the horizontal centreline of cubic cavity (x–v).

the vertical and horizontal centrelines for Re=100; 200; 400 and 1000 are given in Tables V
and VI. The mesh sizes used for these results are 21× 21× 21; 23× 23× 23; 25× 25× 25 and
31× 31× 31, respectively. It is hoped that the results given in Tables V and VI can be used
for comparison by other researchers.
In order to display the numerical results clearly and make the comparison with avail-

able data in the literature, the velocity pro�les of u component along the vertical centre-
line and v component along the horizontal centreline on the plane of z=0:5 are plotted in
Figures 1 and 2 for Re=100; 400 and 1000. It can be found that all the velocity pro�les by
Approaches 1 and 2 agree very well with those of Ku et al. [17] and Jiang et al. [18].
For details of �ow �eld, Figures 3–5 show the velocity vectors, vorticity and pressure

contours computed by Approach 1 on three typical planes for Re=100; 400 and 1000. For
Re=100 and 400, the �ow patterns obtained by Approach 1 agree very well with the results
in References [17, 18]. But for Re=1000, the pattern of vorticity contour on the plane x=0:5
has a little deviation from the results in Reference [18].
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Figure 3. Velocity vectors, vorticity and pressure contours on mid-planes for Re=100 with mesh size
of 21× 21× 21 by Approach 1. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

To make comparison between Approaches 1 and 2, Figures 6–8 display the velocity vectors,
vorticity and pressure contours computed by Approach 2 on the same planes for Re=100; 400
and 1000. For all the cases, the velocity vectors and the vorticity contours agree well with
results in References [17, 18] except for the vorticity contour on the plane of x=0:5 at
Re=1000. Like the results obtained by Approach 1, the pattern of vorticity contours on the
plane of x=0:5 has a little di�erence with the results in Reference [18]. It can be seen
clearly from Figures 3–8 that the patterns of vorticity contours obtained by Approaches 1
and 2 are almost the same for all cases. This fact indicates that our two approaches are
consistent. On the other hand, the pressure contours obtained by Approach 2 show some
spurious patterns as compared with those obtained by Approach 1. This indicates that the
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Figure 4. Velocity vectors, vorticity and pressure contours on mid-planes for Re=400 with mesh size
of 25× 25× 25 by Approach 1. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

pressure �eld obtained by Approach 2 is less accurate than that obtained by Approach 1.
In other words, to obtain accurate pressure �eld, Approach 2 needs more mesh points than
Approach 1. To show this, we increase the mesh size from 25× 25× 25 to 33× 33× 25 and
repeat the computation for Re=400. The velocity vectors, vorticity and pressure contours
of this computation are shown in Figure 9. It can be seen from Figure 9 that the pressure
contours are improved to some extent, but the velocity vectors and the vorticity contours have
no obvious change. These results con�rm the above analysis on Approach 2, which states that
the pressure �eld is a relative �eld since the pressure in the whole �eld including the boundary
is updated from the pressure correction. Therefore, the pressure �eld obtained by Approach
2 cannot represent the true pressure �eld. From Figure 9, it can be observed that when more
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Figure 5. Velocity vectors, vorticity and pressure contours on mid-planes for Re=1000 with mesh size
of 31× 31× 31 by Approach 1. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

mesh points are used to do the calculation, the pressure contours tend to be more accurate,
but the pressure contours in the area near the boundary still have some wiggles.
The above results show that the two proposed approaches, which are based on the PDQ

discretization on a non-staggered grid, can generally obtain accurate numerical results. How-
ever, the two approaches have di�erent features. For Approach 1, the continuity equation
on the boundary is enforced in such a way that it is used to compute the velocity at mesh
points on the planes of i=2; i=N − 1; j=2; j=M − 1, and k=2; k=L− 1 which are ad-
jacent to the boundary. Therefore, the continuity and momentum equations may not be satis�ed
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Figure 6. Velocity vectors, vorticity and pressure contours on mid-planes for Re=100 with mesh size
of 21× 21× 21 by Approach 2. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

at these points. By analysing the derivation process of pressure correction equation in
Approach 2, it was found that the pressure in the whole �eld including the boundary is
updated from the pressure correction. Therefore, the pressure �eld is a relative �eld. From
Figure 9, it can be found that much more mesh points are needed by Approach 2 to obtain ac-
curate pressure �eld as compared with Approach 1. In addition, it was found that Approach 1
is not sensitive to the discontinuity of u-velocity pro�le on the lid-wall. But for Approach 2,
it is needed to smooth the velocity distribution in order to get the reasonable results for
vorticity contours. This means that Approach 2 is sensitive to the discontinuity of u-velocity
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Figure 7. Velocity vectors, vorticity and pressure contours on mid-planes for Re=400 with mesh size
of 25× 25× 25 by Approach 2. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

pro�le. From this aspect, we think that Approach 1 is more competitive than Approach 2 for
solving incompressible Navier–Stokes equations in primitive variable form.

CONCLUSIONS

The three-dimensional Navier–Stokes equations in primitive variable form have been solved
successfully by the polynomial-based di�erential quadrature (PDQ) method for a three-dimen-
sional lid-driven cavity �ow. The two approaches, which are based on the PDQ discretization
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Figure 8. Velocity vectors, vorticity and pressure contours on mid-planes for Re=1000 with mesh size
of 31× 31× 31 by Approach 2. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

on a non-staggered grid and SIMPLE strategy, can obtain accurate numerical results by using
a considerably small number of grid points. The steady-state results for the three-dimensional
driven cavity �ow of Re=100; 400 and 1000 are compared well with available data in the
literature. The benchmark solutions of velocity pro�les on the vertical centreline and horizon-
tal centreline of 3D cavity are provided in the paper for Re=100; 200; 400 and 1000. From
numerical experiments, it was found that the two approaches yield the same velocity vec-
tors and vorticity distributions. However, Approach 1 gives more accurate pressure �eld than
Approach 2. For all the test cases, we found that the combination of SIMPLE strategy with
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Figure 9. Velocity vectors, vorticity and pressure contours on mid-planes for Re=400 with mesh size
of 33× 33× 25 by Approach 2. (a) Velocity vectors; (b) vorticity contours and (c) pressure contours.

PDQ discretization is an e�cient tool for numerical simulation of three-dimensional incom-
pressible �ows.
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